728x15

Monday, September 19, 2011

WHAT IS CONDENSER, WHAT IS CAPACITOR, DIFFERENCE BETWEEN CONDENSER AND CAPACITOR, PARALLEL PLATE CAPACITORS, PARALLEL PLATE CONDENSERS (CONDENSORS); CALCULATING CONDENSERS, FORMULA FOR CAPACITORS; Capacitor known as Condenser; COULOMB THEORY

WHAT IS A CONDENSER - CONDENSOR; WHAT IS A CAPACITOR, DIFFERENCE BETWEEN A CONDENSER AND  A CAPACITOR, PARALLEL PLATE CAPACITORS or CONDENSOR, PARALLEL PLATE CONDENSERS (CONDENSORS); CALCULATING CONDENSERS, FORMULA FOR CAPACITORS or CONDENSORS; Capacitor Also Known as Condenser; COULOMB THEORY; THEORY OF CAPACITORS, THEORY OF CONDENSORS; FORMULA OF CONDENSORS OR CAPACITORS; CONDENSOR VS. CAPACITORS; CONDENSERS Vs. CAPACITORS - FORMULA - THEORY - PRACTICAL - PHYSICS - CHEMISTRY - MATHEMATICS - DIFFERENT DIMENSIONS OF CAPACITOR; HISTORY OF CONDENSORS or CAPACITORS;
========================================================= 



CAPACITOR (also known as CONDENSER) is a passive two-terminal electrical component used to store energy in anelectric field. The forms of practical capacitors vary widely, but all contain at least two electrical conductors separated by a dielectric (insulator). Capacitors used as parts of electrical systems, for example, consist of metal foils separated by a layer of insulating film.
When there is a potential difference (voltage) across the conductors, a static electric field develops across the dielectric, causing positive charge to collect on one plate and negative charge on the other plate. Energy is stored in the electrostatic field. An ideal capacitor is characterized by a single constant value, capacitance, measured in farads. This is the ratio of the electric charge on each conductor to the potential difference between them.
The capacitance is greatest when there is a narrow separation between large areas of conductor, hence capacitor conductors are often called "plates," referring to an early means of construction. In practice, the dielectric between the plates passes a small amount of leakage current and also has an electric field strength limit, resulting in a breakdown voltage, while the conductors and leads introduce an undesired inductance and resistance.
Capacitors are widely used in electronic circuits for blocking direct current while allowing alternating current to pass, in filter networks, for smoothing the output of power supplies, in the resonant circuits that tune radios to particularfrequencies and for many other purposes.

========================================================== 
HISTORY OF CAPACITOR :
Daniel Gralath was the first to combine several jars in parallel into a "battery" to increase the charge storage capacity.Benjamin Franklin investigated the Leyden jar and "proved" that the charge was stored on the glass, not in the water as others had assumed. He also adopted the term "battery",[4][5] (denoting the increasing of power with a row of similar units as in abattery of cannon), subsequently applied to clusters of electrochemical cells. Leyden jars were later made by coating the inside and outside of jars with metal foil, leaving a space at the mouth to prevent arcing between the foils.[citation needed] The earliest unit of capacitance was the 'jar', equivalent to about 1 nanofarad.


In October 1745, Ewald Georg von Kleist of Pomerania in Germany found that charge could be stored by connecting a high-voltage electrostatic generator by a wire to a volume of water in a hand-held glass jar.[1] Von Kleist's hand and the water acted as conductors, and the jar as a dielectric (although details of the mechanism were incorrectly identified at the time). Von Kleist found, after removing the generator, that touching the wire resulted in a painful spark. In a letter describing the experiment, he said "I would not take a second shock for the kingdom of France." The following year, the Dutch physicist Pieter van Musschenbroek invented a similar capacitor, which was named the Leyden jar, after the University of Leiden where he worked.


Early capacitors were also known as condensers, a term that is still occasionally used today. The term was first used for this purpose by Alessandro Volta in 1782, with reference to the device's ability to store a higher density of electric charge than a normal isolated conductor.


Leyden jars or more powerful devices employing flat glass plates alternating with foil conductors were used exclusively up until about 1900, when the invention of wireless (radio) created a demand for standard capacitors, and the steady move to higherfrequencies required capacitors with lower inductance. A more compact construction began to be used of a flexible dielectric sheet such as oiled paper sandwiched between sheets of metal foil, rolled or folded into a small package.
==========================================================
THEORY OF OPERATION :

A capacitor consists of two conductors separated by a non-conductive region.[8] The non-conductive region is called the dielectric or sometimes the dielectric medium. In simpler terms, the dielectric is just an electrical insulator. Examples of dielectric mediums are glass, air, paper, vacuum, and even a semiconductor depletion region chemically identical to the conductors. A capacitor is assumed to be self-contained and isolated, with no netelectric charge and no influence from any external electric field. The conductors thus hold equal and opposite charges on their facing surfaces,[9] and the dielectric develops an electric field. In SI units, a capacitance of one farad means that one coulomb of charge on each conductor causes a voltage of one volt across the device.
The capacitor is a reasonably general model for electric fields within electric circuits. An ideal capacitor is wholly characterized by a constant capacitance C, defined as the ratio of charge ±Q on each conductor to the voltage V between them:[8]
C= \frac{Q}{V}
========================================================== 

For capacitors in parallel
Capacitors in a parallel configuration each have the same applied voltage. Their capacitances add up. Charge is apportioned among them by size. Using the schematic diagram to visualize parallel plates, it is apparent that each capacitor contributes to the total surface area.
C_{eq}= C_1 + C_2 + \cdots + C_n
For capacitors in series

Several capacitors in series.
Connected in series, the schematic diagram reveals that the separation distance, not the plate area, adds up. The capacitors each store instantaneous charge build-up equal to that of every other capacitor in the series. The total voltage difference from end to end is apportioned to each capacitor according to the inverse of its capacitance. The entire series acts as a capacitor smaller than any of its components.
 \frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2} + \cdots + \frac{1}{C_n}
Capacitors are combined in series to achieve a higher working voltage, for example for smoothing a high voltage power supply. The voltage ratings, which are based on plate separation, add up, if capacitance and leakage currents for each capacitor are identical. In such an application, on occasion series strings are connected in parallel, forming a matrix. The goal is to maximize the energy storage of the network without overloading any capacitor.

No comments:

Post a Comment